Orthogenomics of photosynthetic organisms: bioinformatic and experimental analysis of chloroplast proteins of endosymbiont origin in Arabidopsis and their counterparts in Synechocystis.
نویسندگان
چکیده
Chloroplasts are descendents of a cyanobacterial endosymbiont, but many chloroplast protein genes of endosymbiont origin are encoded by the nucleus. The chloroplast-cyanobacteria relationship is a typical target of orthogenomics, an analytical method that focuses on the relationship of orthologous genes. Here, we present results of a pilot study of functional orthogenomics, combining bioinformatic and experimental analyses, to identify nuclear-encoded chloroplast proteins of endosymbiont origin (CPRENDOs). Phylogenetic profiling based on complete clustering of all proteins in 17 organisms, including eight cyanobacteria and two photosynthetic eukaryotes, was used to deduce 65 protein groups that are conserved in all oxygenic autotrophs analyzed but not in non-oxygenic organisms. With the exception of 28 well-characterized protein groups, 56 Arabidopsis proteins and 43 Synechocystis proteins in the 37 conserved homolog groups were analyzed. Green fluorescent protein (GFP) targeting experiments indicated that 54 Arabidopsis proteins were targeted to plastids. Expression of 39 Arabidopsis genes was promoted by light. Among the 40 disruptants of Synechocystis, 22 showed phenotypes related to photosynthesis. Arabidopsis mutants in 21 groups, including those reported previously, showed phenotypes. Characteristics of pulse amplitude modulation fluorescence were markedly different in corresponding mutants of Arabidopsis and Synechocystis in most cases. We conclude that phylogenetic profiling is useful in finding CPRENDOs, but the physiological functions of orthologous genes may be different in chloroplasts and cyanobacteria.
منابع مشابه
Identification of novel chloroplast proteins of endosymbiotic origin by phylogenetic profiling using homolog groups
Chloroplasts are believed to be descendants of an ancestral endosymbiont related to cyanobacteria. Comparative genomics is expected to be useful in identifying the proteins that were transferred to chloroplasts from the endosymbiont. However, most of the present-day chloroplast proteins are encoded by the nuclear genome, and it was not until the nuclear genome of a land plant Arabidopsis thalia...
متن کاملProtein co-migration database (PCoM -DB) for Arabidopsis thylakoids and Synechocystis cells
Protein-protein interactions are critical for most cellular processes; however, many remain to be identified. Here, to comprehensively identify protein complexes in photosynthetic organisms, we applied the recently developed approach of blue native PAGE (BN-PAGE) coupled with LC-MS/MS to the thylakoid proteins of Arabidopsis thaliana and the whole cell proteins of whole cell proteins of Synecho...
متن کاملThe impacts of TRR14 over-expression on Arabidopsis thaliana growth and some photosynthetic parameters
Background: TRR14 protein is a small member of a multi-gene family in Arabidopsis and is the first ones found during screening of seedlings for their resistant to the trehalose sugar.Objectives: Characterization ofTRR14 over-expressed plants with respect to morphological changes, growth and photosynthesis related parameters.Materials and methods: TRR14gene was isolated from Arabidop...
متن کاملA prediction of the size and evolutionary origin of the proteome of chloroplasts of Arabidopsis.
cells are descended from an original cyanobacterial endosymbiont (Fig. 1). In the course of their development from a free-living cyanobacterial ancestor into highly specialized organelles, chloroplasts have lost their autonomy. A key factor in this process of adaptation was the loss of genetic material resulting from gene transfer to the cell nucleus. This is why the vast majority of proteins i...
متن کاملHigher Plant Proteins of Cyanobacterial Origin: Are They or Are They Not Preferentially Targeted to Chloroplasts?
Dear Editor, What does the evolutionary origin of a plant protein tell about its subcellular localization? Naively thinking, one would assume that plant proteins that were originally encoded in the endosymbiont genome are targeted to the chloroplast. However, published data seem to support only a loose link between evolutionary origin and subcellular localization. About half of the Arabidopsis ...
متن کاملذخیره در منابع من
با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید
عنوان ژورنال:
- Plant & cell physiology
دوره 50 4 شماره
صفحات -
تاریخ انتشار 2009